稀土陶瓷材料中稀土元素是以掺杂的形式出现的,微量的稀土掺杂可以极大地改变陶瓷材料的烧结性能、微观结构、致密度、相组成及物理和机械性能。
稀土功能陶瓷包括绝缘材料(电、热)、电容器介电材料、铁电和压电材料、半导体材料、超导材料、电光陶瓷材料、热电陶瓷材料、化学吸附材料等,还有固体电解质材料。在传统的压电陶瓷材料如PbTiO3、PbZrxTi1-xO3(PZT)中掺杂微量稀土氧化物如Y2O3、La2O3、Sm2O3、CeO2、Nd2O3等可以大大改善这些材料的介电性和压电性,使它们更适应实际需要,现在PZT压电陶瓷已广泛地用于电声、水声、超声器件、信号处理、红外技术、引燃引爆、微型马达等方面。由压电陶瓷制成的传感器已成功用于汽车空气囊保护系统。掺杂了La或Nd的BaTiO3电容器介电材料可使介电常数保持稳定,在较宽温度范围内不受影响,并提高了使用寿命。在移动电话和计算机中使用了大量的多层陶瓷电容器,稀土元素如La、Ce、Nd在其中发挥着重要作用。对稀土半导体陶瓷的研究十分活跃,这种材料主要有BaTiO3基掺杂稀土和SrTiO3基掺杂稀土,其室温电阻率为10-2—103Ω·cm,当温度上升到居里温度Tc附近时,电阻率急剧上升,这种现象被称为PTC效应,稀土掺杂在这种效应中发挥着关键作用,PTC热敏半导材料可用作过电过热保护元件、温度补偿器、温度传感器、延时元件、消磁元件等。
稀土高温超导材料也是国际上的热门研究课题。由于稀土氧化物La-Ba-Cu-O系超导体的发现及其以后的研究,超导材料的居里温度Tc有了很大提高。我国在高温超导研究方面处于国际领先地位,Y-Ba-Cu-O体系的制备技术、应用技术及应用基础研究取得了不同程度的进展,RE-Ba-Cu-O超导体的Tc为80~90K,此外我国还合成了碱金属系稀土掺杂超导体如(Sr,Nd)CuO2和Sr1-xYxCuO2。研究发现,用其它稀土离子如Ho取代Y制成的YBCO陶瓷样品,其临界电流密度Jc有不同程度的提高(Y1-xHoxBa2Cu2O7-(HBCO))。超导材料应用广泛,可用作超导电磁体用于磁悬浮列车,可用于发电机、发动机、动力传输、微波等方面。此外,最近日本又开发了一种氧化物热电材料用于半导体二极管,P型半导体为Na:Co氧化物,n型为Nd-Cu氧化物(掺杂Zr),用这种二极管制成的设备可将热能转化为电能,当p-n两端温差为200℃时可产生280mV的电压,这种设备的潜在用途是利用工业生产、垃圾焚烧过程中产生的热量发电,适用温度为400~800℃。还有一种对湿度敏感的材料如掺杂La3+的BaTiO3材料,通过对其电导率的测量确定环境湿度,因而可用作湿度传感器。更重要的还有掺杂稀土的ZrO2固体电解质材料,稀土在其中起到了稳定剂的作用,由Y2O3稳定的ZrO2材料具有结构致密、电阻小、抗热震性好等优点,可用于氧传感器和高温燃料电池。最近日本又开发了一种新的La-Ga氧化物固体电解质材料,其工作温度为600℃,功率为0.4W/m2,完全可以满足实际应用,而Y2O3稳定的ZrO2在1000℃时仅可产生0.2W/m2的功率,这是由于La-Ga氧化物固体电解质中含La,电解质可以允许更多的氧离子流动。
稀土高温结构陶瓷,主要指掺杂稀土的Si3N4、SiC、ZrO2等耐高温、高强度、高韧性陶瓷,是工程陶瓷。掺杂稀土(La、Y)的Si3N4陶瓷及其复合材料可用于高温燃气轮机、陶瓷发动机、高温轴承等高技术领域,其工作温度最高可达1650℃,稀土在其中起到助熔剂和改善晶界的作用。最近日本又开发出一种新的氮化硅陶瓷,1500℃时它的强度为484MPa。氮化硅陶瓷轴承可用于一些特殊环境如有电磁场的环境,其温度适应范围为-40℃~+200℃,并可在无法润滑的环境中使用。而掺杂稀土的ZrO2增韧陶瓷可用作耐磨材料如内燃机零部件、刀片、模具镶嵌件、计算机驱动元件、密封件与陶瓷轴承等。在这种材料中,Y2O3或CeO2作为稳定剂防止ZrO2在冷却过程中由于晶型转变、体积膨胀而造成的陶瓷龟裂。由于氧化纪增韧氧化锆十分耐磨,还可用作细磨研磨介质。
相关新闻Related News